GERAK BENDA
A. KONSEP GERAK
Tahukah kamu bagaimana suatu benda dikatakan bergerak? Benda dapat dikatakan bergerak apabila mengalami perubahan posisi dari suatu titik acuan. Benda yang bergerak akan melalui suatu lintasan tertentu. Lintasan dapat berupa lintasan yang lurus, melingkar atau parabola, ataupun tidak beraturan. Namun, pada bagian ini kita akan mempelajari bagaimana gerak benda pada lintasan yang lurus. Benda yang bergerak pada suatu lintasan yang lurus, melibatkan waktu, jarak, dan kecepatan. Bagaimana hubungan antara jarak dengan waktu? Bagaimana hubungan antara kecepatan dengan waktu?
1. GERAK LURUS
Setiap hari kamu berangkat dari rumah ke sekolah kemudian kembali lagi ke rumah. Misalnya, jika diukur jarak rumah ke sekolah 2 km, maka jarak tempuh yang kamu lakukan setiap hari adalah 4 km. Namun perpindahan yang kamu lakukan bernilai nol km. Mengapa demikian? Ada perbedaan makna antara jarak dan perpindahan. Jarak merupakan panjang lintasan yang ditempuh, sedangkan perpindahan merupakan jumlah lintasan yang ditempuh dengan memperhitungkan posisi awal dan akhir benda, atau dengan kata lain perpindahan merupakan jarak lurus resultan dari posisi awal sampai posisi akhir.
Sekarang pikirkan perjalanan saat kamu pergi dari rumah ke sekolah. Apakah kendaraan yang kamu tumpangi melaju dengan kecepatan tetap? Bagaimana kamu dapat mengukur besar kecepatan kendaraan yang kamu tumpangi? tampak seorang atlet yang bergerak lurus beraturan mampu menempuh jarak 30 meter dalam waktu 6 sekon. Dengan kata lain, atlet tersebut mampu menempuh jarak 5 meter setiap sekonnya. Kemampuan atlet dalam menempuh jarak (s) tertentu setiap sekonnya(t) disebut sebagai kelajuan atau secara matematis dapat ditulis:
tv = s .
Tahukah kamu bagaimana cara mengukur kelajuan kendaraan bermotor? Apakah benar dengan menggunakan speedometer? Ternyata, speedometer yang ada di kendaraan tidak mengukur kecepatan gerak, tetapi mengukur kelajuan Angka yang ditunjukkan pada speedometer selalu berubah-ubah. Hal ini menunjukkan kelajuan sesaat mobil yang sedang bergerak. Berdasarkan pernyataan tersebut, dapatkah kamu mendefinisikan apa yang dimaksud dengan kelajuan sesaat? Berdasarkan Gambar 1.4 dapatkah kamu menentukan kelajuan sesaat mobil pada saat 2 sekon, 4 sekon, dan 8 sekon? Pada mobil tertentu, biasanya dilengkapi oleh alat yang disebut dengan Global Positioning System (GPS) untuk menginformasikan posisi, kecepatan, arah, dan waktu secara akurat. Perhatikanlah Gambar 1.5, terlihat pada GPS mobil melaju dengan kelajuan yang tetap, yaitu 20 m/s atau 72 km/jam. Tahukah kamu apa artinya?
Jika kelajuan mengukur jarak tempuh, maka kecepatan mengukur perpindahan (∆s, dengan ∆ adalah perubahan/selisih) gerak benda tiap satuan waktu (t).
v= ∆s/t
Meskipun kelajuan dan kecepatan memiliki definisi konsep yang berbeda, namun pada Gerak Lurus Beraturan (GLB) besar kecepatan dan kelajuan memiliki nilai, simbol (v), serta satuan yang sama (m/s).
Saat melakukan perjalanan dari rumah ke sekolah, kendaraan yang kamu tumpangi akan bergerak dengan kecepatan yang berubah-ubah tiap waktu Percepatan atau perlambatan mobil tersebut dengan mudah dapat diamati dari adanya perubahan besar kelajuan mobil yang ditunjukkan oleh jarum speedometer atau angka yang muncul pada GPS. Secara matematis, percepatan dapat dirumuskan sebagai berikut.
a=∆v/t
dengan:
a = percepatan (m/s2 )
∆v = perubahan kecepatan (m/s)
∆t = perubahan waktu (s)
vt = kecepatan akhir (m/s)
v0 = kecepatan awal (m/s)
Karena perubahan kecepatan mobil dalam setiap sekon selalu tetap, maka percepatan gerak mobil adalah tetap sehingga mobil tersebut bergerak lurus berubah beraturan (GLBB).Percepatan benda tidak hanya berlaku pada kendaraan yang sedang bergerak secara horizontal, tetapi juga pada benda yang bergerak secara vertikal. Semua benda yang ada di permukaan bumi mengalami gaya gravitasi bumi. Gaya gravitasi yang dimaksud adalah gaya tarik benda oleh bumi sehingga benda mengalami percepatan konstan yaitu sebesar 9,8 m/s2 (percepatan gravitasi). Untuk memudahkan dalam perhitungan, percepatan gravitasi bumi dibulatkan menjadi 10 m/s2
2. GAYA
Gaya adalah tarikan atau dorongan. Gaya dapat mengubah bentuk, arah, dan kecepatan benda. Misalnya pada plastisin, kamu dapat melempar plastisin, menghentikan lemparan (menangkap) plastisin, atau bahkan mengubah bentuk plastisin dengan memberikan gaya. Tahukah kamu, gaya apakah yang diberikan pada plastisin tersebut? Ada berapa jenis gaya yang dapat kita temukan dalam kehidupan sehari-hari?
Gaya dapat dibedakan menjadi gaya sentuh dan gaya tak sentuh. Gaya sentuh contohnya adalah gaya otot dan gaya gesek. Gaya otot adalah gaya yang ditimbulkan oleh koordinasi otot dengan rangka tubuh. Misalnya, seseorang hendak memanah dengan menarik mata panah ke arah belakang (Gambar 1.7a). Gaya gesek adalah gaya yang diakibatkan oleh adanya dua buah benda yang saling bergesekan. Gaya gesek selalu berlawanan arah dengan gaya yang diberikan pada benda. Contohnya adalah gaya gesekan antara meja dengan lantai. Meja yang didorong ke depan akan bergerak ke depan, namun pada waktu yang bersamaan meja juga akan mengalami gaya gesek yang arahnya berlawanan dengan arah gerak meja.
Gaya tak sentuh adalah gaya yang tidak membutuhkan sentuhan langsung dengan benda yang dikenai. Contohnya seperti saat kita mendekatkan ujung magnet batang dengan sebuah paku besi. Seketika paku besi akan tertarik dan menempel pada magnet batang. Hal tersebut disebabkan oleh adanya pengaruh gaya magnet yang ditimbulkan magnet batang. Selain gaya magnet, gaya gravitasi pada orang yang sedang terjun payung juga merupakan contoh gaya tak sentuh. Lebih lanjut tentang gaya dan interaksinya terhadap gerak benda akan dibahas pada pembahasan tentang Hukum Newton tentang gerak.
3. HUKUM NEWTON
a. Hukum I Newton
Coba pikirkan, mengapa saat berada di dalam bus yang sedang melaju kencang dan tiba-tiba bus direm badan kita akan terdorong ke depan? Mengapa pada saat berada di dalam mobil kita perlu mengenakan sabuk pengaman?
Pada percobaan sifat kelembaman suatu benda, kamu menemukan fakta bahwa gelas akan tetap diam saat kertas ditarik dengan cepat secara horizontal. Hasil percobaan tersebut menunjukkan bahwa benda memiliki kecenderungan untuk tetap mempertahankan keadaan diam atau geraknya dengan kecepatan tetap yang disebut sebagai inersia atau kelembaman benda
Contoh lain yang menunjukkan inersia benda adalah saat kamu berada di dalam sebuah mobil yang sedang melaju kencang kemudian tiba-tiba di rem. Badan kamu akan terdorong ke depan karena badan ingin mempertahankan geraknya ke depan. Peristiwa tersebut yang pada akhirnya memunculkan ide teknologi sabuk pengaman yang dipasang di kendaraan bermotor, khususnya mobil
Newton menyatakan sifat inersia benda bahwa benda yang tidak mengalami resultan gaya (∑F=0) akan tetap diam atau bergerak lurus beraturan. Hal ini selanjutnya dikenal dengan Hukum I NewtoN
B. Hukum II NewtoN
Percobaan Hukum II Newton membuktikan bahwa percepatan gerak sebuah benda berbanding lurus dengan gaya yang diberikan, namun berbanding terbalik dengan massanya atau dapat dirumuskan:
a ≈ ∑F
m
Di dalam kehidupan sehari-hari kita sering menemui fakta bahwa pada saat memindahkan balok akan lebih cepat jika gaya yang dikenakan semakin besar. Hal ini dikarenakan gaya berbanding lurus dengan percepatan. Jadi, dengan gaya yang besar maka akan didapatkan percepatan yang lebih besar juga
Contoh lainnya adalah saat memindahkan meja yang ringan akan lebih cepat daripada memindahkan lemari yang berat jika kita menggunakan besar gaya dorong yang sama. Hal ini disebabkan massa meja yang lebih kecil daripada massa lemari dan massa berbanding terbalik dengan percepatan benda. Semakin kecil massa benda, maka semakin besar percepatan benda tersebut.
c. Hukum III Newton
Pernahkah kamu berpikir, bagaimana sebuah roket dapat meluncur ke angkasa? Roket yang terdorong ke atas diakibatkan oleh semburan gas ke bawah. Semakin kuat semburan gas ke bawah, maka roket akan semakin cepat terdorong ke atas. Berdasarkan fakta tersebut, apa yang sebenarnya terjadi pada roket yang sedang diluncurkan? Gaya-gaya apa saja yang memengaruhi gerak roket tersebut? Apakah gaya-gaya pada gerak roket saat pertama kali diluncurkan sama seperti gaya-gaya roket saat sudah lepas dari landasannya? Untuk memahami secara rinci mengenai gerak roket
Hukum III Newton menyatakan bahwa ketika benda pertama mengerjakan gaya (Faksi) pada benda kedua, maka benda kedua tersebut akan memberikan gaya (Freaksi) yang sama besar ke benda pertama namun berlawanan arah atau Faksi=−Freaksi. Jadi gaya aksi reaksi selalu bekerja pada dua benda yang berbeda dengan besar yang sama. Contoh gaya aksi dan reaksi tersebut misalnya pada peristiwa orang berenang. Gaya aksi dari tangan perenang ke air mengakibatkan gaya reaksi dari air ke tangan dengan besar gaya yang sama namun arah gaya berlawanan, sehingga orang tersebut akan terdorong ke
depan meskipun tangannya mengayuh ke belakang. Karena massa air jauh lebih besar daripada massa orang, maka percepatan yang dialami orang akan jauh lebih besar daripada percepatan yang dialami air. Hal ini mengakibatkan orang tersebut akan melaju ke depan Tahukah kamu bahwa gerak burung terbang dapat dijelaskan dengan menggunakan hukum III Newton. Perhatikan Burung mengepakkan sayap ke belakang untuk memberikan gaya aksi ke udara. Udara yang massanya jauh lebih besar daripada burung, memberi gaya reaksi yang nilainya sama besar dengan gaya aksi namun berlawanan arah, sehingga mengakibatkan burung dapat melaju kencang ke depan. Lalu bagaimana gerakan burung di tempat yang hampa udara? Coba pikirkan apa yang akan terjadi pada burung, diskusikan dengan temanmu!
1. Seorang anak mendorong benda dengan gaya 80 N sehingga benda tersebut bergerak dengan kecepatan tertentu. Jika massa benda tersebut 8 kg, hitunglah percepatan benda tersebut?
F = 80 N
m = 8 kg
ditanyakan: a = ?
jawab:
a = F/m
a = 80 N/8 kg
a = 10 m/s2
Jadi percepatan benda tersebut adalah 10 m/s2
2. Indah mendorong sebuah meja dengan gaya 100 N sehingga meja tersebut berpindah dengan percepatan 2 m/s2. Hitunglah berapa massa meja tersebut?
Diketahui:
a = 2 m/s2
ditanyakan: m = ?
jawab:
a = F/m => m = F/a
m = 100 N/(2 m/s2)
m = 50 kg
Jadi massa meja tersebut adalah 50 kg
3. Haha dan Hihi mendorong sebuah lemari ke kanan secara bersamaan. Jika gaya yang dikeluarkan oleh Haha dan Hihi secara berturut-turut 40 N dan 50 N maka berapa total gaya yang dikeluarkan keduanya? Dan hitung massa lemari tersebut jika lemari tersebut berpindah dengan percepatan 0,5 m/s2?
Diketahui:
F1 = 40 N
F2 = 50 N
a = 0,5 m/s2
ditanyakan:
R = ?
m = ?
Jawab:
Sekarang hitung terlebih dahulu berapa resultan gaya yang bekerja pada lemari tersebut.
R = F1+F2
R = 40 N + 50 N
R = 90 N
Jadi resultan gaya yang bekerja pada lemari tersebut adalah 90 N
Dengan menggunakan hasil dari resultan gaya tersebut sekarang kita hitung massa lemari tersebut dengan menggunakan konsep hukum II newton.
m = F/a => m = R/a
m = 90 N/(0,5 m/s2)
m = 180 kg
Jadi massa lemari tesebut adalah 180 kg.
4. Sebuah tali ditarik ke kanan dengan gaya 100 N dan ditarik ke kiri dengan gaya 40 N. Berapa resultan gaya yang dikenakan pada tali tersebut dan ke mana arah resultan gaya tersebut?
Diketahui:
F1 = 100 N
F2 = -40 N
Ditanyakan: R = ?
Jawab:
R = F1+F2
R = 100 N- 40 N
R = 60 N ke kanan
Jadi resultan gayanya 60 N ke kanan
5. Wahyu memiliki massa 40 kg. Jika percepatan gravitasi 10 m/s2 hitunglah berat Wahyu?
Diketahui:
m = 40 kg
g = 10 m/s2
Ditanyakan:
w = ?
Jawab:
w = m.g
w = 40 kg. 10 m/s2
w = 400 N
Jadi berat wahyu adalah 400 N
No comments:
Post a Comment
Silahkan berikan komentar jika ini bermanfaat